Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo.
نویسندگان
چکیده
BACKGROUND AND PURPOSE In light of recent evidence suggesting that an upregulation of K+ efflux mediated by outward delayed rectifier (I(K)) channels promotes central neuronal apoptosis, we sought to test the possibility that blockers of I(K) channels might be neuroprotective against hypoxia/ischemia-induced neuronal death. METHODS Membrane currents were recorded with the use of patch clamp recordings in cultured murine cortical neurons. Protective effects of K+ channel blockers were examined in rats subjected to transient middle cerebral artery occlusion followed by 14-day reperfusion. RESULTS The K+ channel blocker tetraethylammonium (TEA) (5 mmol/L) selectively blocked I(K) without affecting N-methyl-D-aspartate receptor-mediated current or voltage-gated Ca2+ currents. Both TEA and a lipophilic K+ channel blocker, clofilium, attenuated neuronal apoptosis induced by hypoxia in vitro and infarct volume induced by ischemia in vivo. CONCLUSIONS These data are consistent with the idea that K+ channel-mediated K+ efflux may contribute to ischemia-triggered apoptosis and suggest that preventing excessive K+ efflux through K+ channels may constitute a therapeutic approach for the treatment of stroke.
منابع مشابه
Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury
Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...
متن کاملO24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملEffect of Some Calcium Channel Blockers in Experimentally Induced Diabetic Nephropathy in Rats
Diabetic nephropathy (DNP) is considered a CRD (Chronic Renal Disease); it is a major cause of illness and premature death in people with DM. The present study was designed to illustrate the role of CCBs (amlodipine and diltiazem) in prevention and treatment of DNP in rats. Eighty male albino rats weighing (130-180gm) were used in this study. These animals were subdivided into five equal groups...
متن کاملHypoglycemia induces general neuronal death, whereas hypoxia and glutamate transport blockade lead to selective retinal ganglion cell death in vitro.
PURPOSE To examine the impact of experimental ischemia and interruption of glutamate transport on retinal neuronal cell, especially retinal ganglion cell (RGC), survival in vitro. METHODS Cell cultures were prepared from adult pig retinas and maintained under different experimental conditions of increasing hypoglycemia, environmental hypoxia (delayed postmortem period or atmospheric PO2 <2%),...
متن کاملThe effects of ATP-dependent potassium channel opener; pinacidil, and blocker; glibenclamide, on the ischemia induced arrhythmia in partial and complete ligation of coronary artery in rats
Objective(s): Electrical inhomogeneity between ischemic and non ischemic myocardium is the basis of arrhythmia which occurs following coronary artery occlusion. The leakage of potassium from the ischemic region to the non ischemic region is very effective in the generation of these arrhythmias. The aim of this study is to research the effect of ATP-dependent potassium (KATP) channel blocker (gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2003